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Abstract
The fusion of multimodal medical images has garnered painstaking attention for clinical diagnosis and surgical planning. 
Although various scholars have designed numerous fusion methods, the challenges of extracting substantial features without 
introducing noise and non-uniform contrast hindered the overall quality of fused photos. This paper presents a multimodal 
medical image fusion (MMIF) using a novel deep convolutional neural network (D-CNN) along with preprocessing schemes 
to circumvent the mentioned issues. A non-linear average median filtering (NL-AMF) and multiscale improved top-hat (MI-
TH) approach are utilized at the preprocessing stage to remove noise and improve the contrast of images. The non-linear 
anisotropic diffusion (NL-AD) scheme is employed to split the photos into base and detailed parts. The fusion of base parts 
is accomplished by a dimension reduction method to retain the energy information. In contrast, the detailed parts are fused 
by novel D-CNN to preserve the enriched detailed features effectively. The simulation results demonstrate that the proposed 
method produces better brightness contrast and more image details than existing methods by acquiring 0.7649 to 0.8986, 
0.3520 to 0.4783, 0.7639 to 0.9056, 68.8932 to 81.0487 gain for quality transfer ratio from source photo to a generated photo 
( QAB

G
 ), feature mutual information (FMI), structural similarity index (SSIM), and average pixel intensity (API) respectively.

Keywords Image fusion · Feature extraction · Convolution neural network · Computed tomography · And magnetic 
resonance imaging

1 Introduction

The MMIF has received painstaking attention due to its vast 
applications that assist doctors in diagnosing and treating 
diseases accurately [1]. It has opened a new research path for 
various medical applications, including Alzheimer’s disease 
(AD), coronary artery heart disease, COVID-19 detection, 
brain tumor disease [2], and so on [3]. The modern advance-
ments in multispectral, high-resolution, reliable, and cost-
effective image sensor design technology are the primary 

motivation for the inspiration in MMIF research [4]. With 
the introduction of these multisensory imaging techniques 
in the last few decades, MMIF has been an emerging field 
of research worldwide. Most medical diagnoses are made 
by computers or doctors who look at patient photos. Medi-
cal images are produced using a variety of imaging modali-
ties, each with a unique imaging mechanism and emphasis 
on describing the human body [5]. Computed tomography 
(CT) photos are utilized to identify bone fractures, tumor 
locations, cardiac tissues, pulmonary emboli, skulls, and 
brain lesions but are unable to reveal information about the 
soft tissues. On the other hand, magnetic resonance imag-
ing (MRI) photos provide excellent data regarding the soft 
tissues and blood flow of the brain but cannot record details 
regarding the hard bones and activity of the brain [6, 7].

Each modality provides doctors with limited medical 
information, requiring additional time and effort to diag-
nose the patient's diseases. In addition, gathering data 
from multiple modalities can lead to the potential loss 
of critical diagnostic information regarding the patient’s 
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ailment, resulting in diminished diagnostic precision. The 
ideal way to address this issue is to generate a single photo 
by merging multiple modality photos of the client’s body 
from the same spot, referred to as MMIF. The MMIF is a 
process of feature extraction from multiple photos to gen-
erate one output photo that preserves all salient features. It 
not only boosts the efficiency of medical professionals to 
save time by minimizing their workload but also facilitates 
accurate diagnosis of medical diseases [8].

Most MMIF methods typically involve three steps: first, 
the photo pixels are mapped into the transform domain, 
then fusion is performed on the transform coefficients, and 
finally, the fused photo is produced by applying the inverse 
transformation to fused coefficients. The basic procedure 
for MMIF is presented in Fig. 1.

The photo registration is employed to geometrically 
well-align two photos, and then fusion can be performed 
on both photos. The fusion is used by overlapping the mul-
tiple source photos to obtain one fused photo with com-
plementary features. The ideal fusion is achieved when all 
the substantial features in the source photos are present 
in the fused photo, and the fused photo does not contain 
extra information that is not available in the source photos.

The MMIF is achieved at the pixel, feature, and deci-
sion levels based on specific applications and the nature 
of the input photos [9]. The most used method is pixel-
level, which is accomplished by directly mapping the 
pixels of multiple photos. On the other side, the feature-
level method is achieved by retrieving relevant features 
by amalgamating features from both source photos to cre-
ate new features with more substantial information than 
any of the individual source photos. The region-based 
approach is one of the common examples of feature-level 
fusion, which numerous scholars employ. The decision-
level approach is performed by acquiring substantive fea-
tures from individual source photos and then determining 
to amalgamate the retrieved features depending on the 
defined specifications. This approach is accomplished by 
two phases: retrieving features and then amalgamating the 
features. First, it retrieves all the features obtained by all 
decisions from each photo using defined criteria. Then, 

the final decision is made to amalgamate the significant 
features acquired from all decisions [10].

The main motive of any MMIF scheme is to generate 
a single output photo that retrieves all substantial features 
(energy information and precise detailed features such as 
textures, edges, and boundaries) from the multiple source 
photos without adding noise. A lot of MMIF methods have 
been implemented so far by scholars, which are broadly 
categorized as multiscale decomposition (MSD) [11], 
subspace-based, neural network (NN), sparse representa-
tion (SR), deep learning (DL) [12], and hybrid methods. 
Subspace-based methods such as principal component 
analysis (PCA), independent component analysis (ICA) [13], 
and robust PCA have been used, but these schemes fail to 
retain spectral features. The MSD schemes such as discrete 
wavelet transform (DWT) [14], discrete stationary wavelet 
transform (DSWT), contourlet transform, non-subsampled 
contourlet transform (NSCT), and non-subsampled shearlet 
transform (NSST) restore satisfactory spectral data (edges, 
contours, textures, and boundaries) but they unable to retain 
spatial information [15]. The edge-preserving schemes, in 
particular, cross bilateral filtering (CBF), guided filtering, 
and isotropic diffusion can achieve reasonable information, 
but the fused photos are affected by artifacts and halo effects. 
Numerous scholars have designed the MMIF method using 
SR, for instance, orthogonal matching pursuit (OMP), over-
complete dictionary (OCD), and simultaneous OMD, but 
these schemes have limited ability to retain detailed features 
[16]. The role of deep learning algorithms in the MMIF has 
gotten noteworthy attention due to their outstanding perfor-
mance for spectral data, but these models still lack retain-
ing spatial information. Moreover, the direct implication of 
deep learning schemes such as convolutional neural network 
(CNN), visual geometry group (VGG-19), and residual net-
works (ResNet) in the spatial domain resulting substantial 
loss in energy information [17].

The prime motive of any multimodal medical image 
fusion method is to produce a single fused photo that can 
retain all substantial features from multiple input photos with 
enhanced contrast without introducing noise and artifacts. 
It is well-known that medical images are highly distorted 
by noise due to various factors, including camera circuitry, 

Fig. 1  The diagram of MMIF
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outside environment, and improper lighting. In addition, 
non-uniform contrast is another challenging task that is 
caused by varying contrast and uneven lighting conditions. 
Moreover, retaining substantial features from both images 
is another crucial task because the image contains spatial as 
well as spectral information, and one approach cannot pre-
serve complementary information. Furthermore, the fusion 
of multiple photos is also the prior goal to acquire a high-
quality final fused photo. Numerous scholars have applied 
novel fusion approaches, but their methods only focus on 
specific parts instead of considering all crucial issues, result-
ing in an image with noise, varying contrast, improper fusion 
strategy, and insufficient spatial or spectral features. In this 
regard, our proposed method addresses the technical gaps 
of recent works by presenting a suitable method for each 
specific issue to mitigate the described shortcomings. To 
the best of our investigation, this is the initial effort towards 
designing multiple new approaches for circumventing each 
specific issue.

The non-linear average median filtering (NL-AMF) 
scheme at the preprocessing stage is employed in this paper 
for noise reduction, which has never been used by research 
in the field of image fusion. This combined NL-AMF incor-
porates a statistical histogram that adaptively shrinks the 
filtering mask based on noise level to achieve a desirable 
reduction in noise while also reducing the complexity. The 
acquired image is then processed by another preprocess-
ing multiscale improved top-hat (MI-TH) scheme that uses 
different-sized multiscale structuring elements that properly 
retrieve the region of interest (ROI), thereby producing an 
image with enhanced contrast. After that, the non-linear ani-
sotropic diffusion (NL-AD) method is employed to partition 
the base and detail parts effectively through its intra-smooth-
ing procedure. It is a vital objective of any fusion approach 
to retain substantial detailed featured information, which lies 
in spectral parts of an image, and deep learning has gained 
tremendous attention to capture substantial detailed features. 
This paper implements a novel deep convolutional neural 
network (D-CNN) that uses deconvolution layers and skip-
ping convolution layer that has the potential to preserve all 
substantial detailed features without losing colors or patterns 
from images. In contrast, the base parts are fused by prin-
cipal component analysis (PCA), which is proven to be an 
effective approach for preserving energy information with-
out introducing collision.

Finally, the base parts and detailed parts are fused by 
the inverse transformation of the NL-AD approach. The 
proposed approach outclasses modern and state-of-the-art 
(SOTA) methods in qualitative evaluation through experts’ 
human visual experience and quantitative analysis by math-
ematical computations.

The essential contributions of this research are empha-
sized as follows:

• The amalgamated NL-AMF mitigates the noise by adjust-
ing the filter size according to the noise level, while the 
unique characteristics of the statistical histogram speedup 
the searching process for finding median values that 
reduce the computation time.

• The MI-TH using two different-sized structuring ele-
ments is employed to retrieve a substantial region of 
interest (ROI). Then, NL-AD using forward time central 
space (FTCS) is deployed to retain the significant energy 
information (base parts) and enriched detailed features 
(detailed parts).

• The detailed parts are fused by a novel D-CNN using 
skipping convolution and deconvolution layers, which 
use direct mapping and the focus map to shield the 
enriched detailed features without losing colors or other 
crucial details.

• The base parts are fused by a dimension reduction 
approach that projects high-dimensional data into low-
dimension data while retrieving the energy information 
at high-resolution photo quality. The ultimate fused photo 
is retrieved through the superposition of the base part and 
detailed parts.

The rest of this article is arranged as follows. Section 2 
highlights the detailed literature work for recent and SOTA 
methods. Section 3 presents our proposed methodology. The 
experimental results are reported in Section 4. The discus-
sion of our findings and the conclusion of this article are 
elaborated in Section 5 and Section 6, respectively.

2  Related work

The MMIF has received significant attention due to its grow-
ing demands in medical applications. Numerous scholars 
have put their efforts in the last two decades to design algo-
rithms that can be successfully implemented in hospitals to 
diagnose clinical diseases precisely. The mainstream MMIF 
is organized into seven classes, each with several types 
presented in Fig. 2. Various articles have been published 
regarding MMIF. The literature work of classical and recent 
methods is presented in Fig. 2.

The DWT approach is utilized in [18], which splits the 
input photos into low frequency (LF) and high frequency 
(HF) to retain the coarse energy information and detailed 
features. Nonetheless, the decimation process in down-
sampling distorts photo details. Another scholar in [19] has 
implemented discrete cosine transform (DCT) that uses cor-
relation parameters for determining the extent of changes in 
the fused photo followed by LF filtration. These approaches 
(DWT, improved DWT, DCT, and DSWT) retain better 
spectral data than spatial domain approaches. Nevertheless, 
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these schemes still fail to retain all substantial features due 
to limited directional information.

The non-subsample shearlet transform (NSST) is pin-
pointed in [20], which avoids the discarding procedure, and 
it uses an averaging fusion scheme for LF parts while larger 
absolute values fuse HF components. This multi-resolution 
and multi-directional method retrieves the enriched detailed 
contours, textures, and edge information in the acquired 
photo. Another approach using NSCT and stacked sparse 
auto-encoder (SSAE) is designed in [21]. The source photos 
are decomposed using the NSCT method, and then SSAE is 
implemented for feature extraction of high-frequency (HF) 
images. In contrast, the low-frequency (LF) images are fused 
by the maximum fusion strategy. This method introduces 
artifacts and uneven illumination. A new decomposition 
approach named weighted fast discrete curvelet transform 
(W-FDCT) along with optimized Type-2 fuzzy entropy is 
developed in [22]. This method splits source photos into 
LF and HF by W-FDCT, and then an averaging scheme is 
applied for the fusion of LF. The HF photos are fused by the 
optimized Type-2 fuzzy entropy approach, which is good at 
capturing directional information. Though these methods 
(NSCT, W-FDCT, and NSST) capture sharp edges and tex-
tures with multi-directional information, the fused photos 
have insufficient spatial information.

Edge-preserving multiscale decomposition methods have 
also received noteworthy consideration in the last decade. 
These filtering methods segment the photo into the base and 
detail parts. The base part precisely produces the impactful 
changes in the intensity, and the detailed layer contains the 

series of photos having adjustable resolution. In [23], the 
researcher has proposed a cross-bilateral filtering (CBF) 
scheme in which weight calculation entails measuring the 
photo strength by subtracting the input photo. Weights are 
then directly multiplied and normalized to acquire the output 
photo. Numerous other edge-preserving methods have been 
used, but the artifacts and halo effects around the edges are 
generated that distort the photo quality.

The SR algorithms have been deployed in MMIF to learn 
an over-complete dictionary (OCD) from vivid images, and 
then a trained dictionary sparsely presents the source pho-
tos. These methods utilize a sliding window approach to 
partition photos into several overlapping patches to mitigate 
the artifacts. The amalgamated convolutional sparse repre-
sentation (CSR) is implemented in [24], which splits the 
photo into the base and detailed sub-photos. The choose-
max scheme fuses the base parts, while the detailed sub-
photos are fused by sparse coefficients, which are acquired 
by CSR. This approach potentially retrieves enriched details 
than simple SR methods. Numerous efforts have been made 
to implement SR methods for producing a fused photo with 
a substantial feature. However, these approaches are highly 
sensitive for dictionary selection, which is a crucial chal-
lenge and requires huge computational requirements.

The hybrid methods have played a substantial role in 
enhancing the quality of fused photos in the last two decades. 
Authors in [25] present a hybrid multimodal medical image 
fusion approach in which they utilized the Laplacian pyra-
mid (LP), sum-modified Laplacian (SML), and sparse repre-
sentation (SR). The LP in this work acts as a decomposition 

Fig. 2  MMIF classification and 
its sub-categories
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of images into low-frequency (LF) and high-frequency (HF) 
photos. Then, SR is used to fuse the LF photos, while SML 
is applied to fuse the HF photos. Another hybrid algorithm is 
designed in [26], which utilizes non-subsampled contourlet 
transform (NSCT) and guided filtering. The source photos 
are split into LF and HF by NSCT. After that, the LF images 
are fused by the average fusion strategy, while the HF pho-
tos are fused by employing a deep-guided filter approach. 
However, this approach is unable to provide detailed infor-
mation due to non-uniform illumination, and noise is gen-
erated due to the environment and camera circuitry. The 
non-subsampled shearlet transform (NSST), convolutional 
sparse representation (CSR), and multiple fusion strategies 
are highlighted in [27]. The photos are decomposed in LF 
and HF using the NSST. Then, CSR and alternating direc-
tion multiplier method (ADMM) are utilized to train the LF 
and HF. The LF images are fused by combining the regional 
energy method and average Norm method, while the HF 
photos are fused by spatial frequency (SF) and average Norm 
method. This method has the potential to increase contrast, 
but the final fused image is distorted due to artifacts that are 
caused by complicated fusion strategies. Another NNST-
based approach using CSR and multiple fusion strategies is 
designed in [28]. The input photos are first split into LF and 
HF; then, HF photos are fused by using the CSR approach. 
In contrast, the LF parts are fused by a mutual information 
correlation strategy. The threshold is set, and then the maxi-
mum fusion or weighted average fusion scheme is applied 
based on specific criteria. The latent low-rank representation 
(LatLRR) is deployed in [29], which uses LatLRR to divide 
source photos into saliency parts and low rank. After that, 
the sum strategy fuses the saliency parts, while a simple 
averaging scheme fuses low-rank parts. An amalgamated 
method is deployed in [30], which employs Discrete wave-
let transform (DWT), curvelet transform, maximum fusion 
method, and the principal component analysis (PCA). First, 
the input photos are split into LF and HF using the DWT 
approach, and then LF parts are fused using the maximum 
fusion rule. The HF parts are fed to curvelet transform and 
then PCA fusion method is applied. This method is compli-
cated and unable to provide sufficient information. In [31], 
the authors implemented another hybrid approach using 
DWT and convolution neural networks (CNN). The DWT 
approach acts as a decomposition of source photos, and then 
these decomposed photos are fed to CNN for feature extrac-
tion. Finally, the averaging scheme for fusion is utilized. 
This method fails to capture energy information, and noise 
is introduced in the final fused photo.

Recently, hybrid algorithms using deep learning (DL) mod-
els have become a prominent research area of interest in the 
field of MMIF due to their outperforming results [32]. Numer-
ous renowned scholars have diverted their research from other 
domains to DL due to its ever-growing demands in MMIF 

[33, 34]. Another approach is implemented in [35], which uses 
average weighting fusion for LP parts while high HF parts 
are extracted using ResNet-512. These multi-layer features 
are processed and fused by multiple strategies (regularization, 
bilinear interpolation, and choose-max) to acquire the highest 
weight layers, which are then multiplied by HF to generate 
new HF. Then, superposition is applied to reconstruct the LF 
and new HF parts to get a final fused photo. Another fully con-
nected CNN algorithm in [36] is developed to decompose the 
photo into LF and HF by local non-subsampled shearlet trans-
form (LNSST). CNN extracts the HF images to get weight 
maps, and these weight maps are fused by average gradient, 
while LF photos are fused by local energy.

The authors in [37] have designed a deep convolutional 
neural network for the restoration of the photos. This work 
establishes the connection between a traditional optimization-
based scheme and a neural network architecture. A separable 
structure is utilized for robust support for reliable deconvolu-
tion to mitigate the noise and artifacts. In this paper, a deep 
convolution neural network is used for a single image that is 
blurred or degraded. The network architecture is designed to 
efficiently handle the process of restoring images from their 
blurred or degraded versions. By leveraging the hierarchical 
features learned through multiple layers, this method aimed to 
achieve superior performance in image restoration tasks com-
pared to traditional approaches. The authors in [38] introduced 
a novel framework that combines Bayesian methods with mul-
tiscale convolutional neural networks (CNNs) to accurately 
predict local stress fields in structures containing microscale 
features. This approach aimed to address the challenges of 
predicting complex stress distributions in materials with het-
erogeneous microstructures by leveraging both the predictive 
power of CNNs and the uncertainty quantification capabilities 
of Bayesian methods.

Another CCN-based algorithm using hybrid optimiza-
tion dynamic (HOD) is designed in the paper [6], in which 
photos are split into LF and HF parts. The split photos are 
fed to CNN for feature extraction, and HOD is utilized to 
improve the accuracy of weights. The authors in [10] have 
used the LatLRR approach to obtain various saliency parts 
and one low-rank part, and then VGG-19 is employed for 
feature extraction to generate weight maps. The low-rank 
parts are fused by making Hadamard products of weight 
maps and source photos, while saliency parts are fused by 
choosing the max rule. Table 1 presents the overall summary 
of existing methods.

3  Proposed methodology

The essential goal of any MMIF method is to merge multi-
ple photos to generate a single output photo that possesses 
all the substantial detailed features and energy information 
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from given photos without adding noise and artifacts. The 
hybrid algorithms using CNN have taken key attention in 
the MMIF area due to their outstanding performance in 
generating fused photos. Nonetheless, these approaches are 
still lacking due to non-uniform contrast and uneven light-
ing conditions. Furthermore, the appropriate extraction of 
detailed features and energy information during decomposi-
tion is another rigorous task that distorts the overall qual-
ity of the fused photo. In addition, noise is another crucial 
challenge in medical photos, which is added due to imaging 
mechanism sensors and environmental effects. In this regard, 
this work fills the technical gaps of recent studies by design-
ing a novel hybrid method that circumvents the mentioned 
flaws. The proposed method in this work comprises several 
stages, as shown in Fig. 3.

The vital objective of each stage is to improve the quality 
of the photo by performing a particular task. Each stage of 
the proposed method is discussed in detail in the following 
subsections.

3.1  Amalgamated non‑linear average median 
filtering (NL‑AMF)

The noise is a crucial challenge that is introduced due to 
abrupt variations in lighting, camera circuitry, and envi-
ronmental changes. Some scholars have used different 
approaches to reduce the noise effect, but their approaches 
increase the complexity. There is a need to design a tech-
nique that reduces the noise and decreases the complexity. 
This work presents a new amalgamated NL-AMF approach 
at the preprocessing stage, which also employs a statisti-
cal histogram to mitigate the noise with its fast computa-
tion. It is well-known that better photo details are achieved 
if the mask size is smaller, but noise cannot be removed 
effectively.

In contrast, if the mask size is larger, the photo details 
cannot be restored effectively, but the noise is effectively 
mitigated. This paper addresses the issue by introducing 
an adaptive filtering approach that resizes the mask based 
on the noise level. The noise reduction accomplished using 
filtration primarily depends on the shape and length of the 
mask. In contrast, the computation complexity is controlled 
by the rate at which it can locate the median value. The 
combined NL-AMF that incorporates statistical histogram 
adaptively shrinks the filtering mask based on noise level to 
achieve an exceptional reduction in noise, thereby generating 
processed photos with precise details.

Let n be the mask size in which max is the maximum 
value of gray level intensities, avg is the average value of 
gray levels, min is the minimum value of gray level inten-
sities, med is the median value, and f(i,j) is the central 
mask value. Then, the adaptive filtering is acquired in two 
stages. The first stage is to resize the mask and initialize Ta
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this mask by n = 3. Then we compute A1 = med − min and 
A2 = med − max . After that, verify if A1 > 0 and A2 < 0 
then employ the second step of applying median filtering to 
compute median values; however, if any of these conditions 
are not correct, then increase the filter size by n = n + 2.

Figure 4 presents the flow chart that further helps in 
understanding this working phenomenon. Each pixel is 
examined to reduce the noise effect. If the value of the pixel 
exceeds the average value in the mask, it is assumed to be 
distorted by noise, then substitute that pixel with the median 
value according to the mask’s length. On the other hand, we 
keep the value of the pixel unchanged if its value is less than 
or the same as an average value.

This approach not only retains the substantial details in 
the photo but also decreases the computation time due to 
the use of statistical histogram in the search process of find-
ing median values. After substituting the original value of a 
pixel with its median value within the mask, the subsequent 
calculation of the average value can utilize the updated pixel 
value. Forming the iterative process not only reduces the 
computation time but also improves the noise-mitigation 
effect.

3.2  Multiscale improved top‑hat (MI‑TH) transform

Contrast enhancement is one of the most critical challenges 
in medical photos because uneven lighting results in poor 
contrast in a photo. Numerous scholars have deployed the 

Top-hat-bottom-hat (THBH) approach for medical photos 
due to its satisfactory results. Nonetheless, this approach 
uses only a single structuring element, which still fails to 
produce a desirable contrast in the photo. This paper designs 
a novel MI-TH approach that uses two distinct size structur-
ing elements referred to as inner structuring elements (Si) 
and outer structuring elements (So) . These two structuring 
elements ( Si and So ) are formed, whereas the size of So is 
typically larger than Si . The MI-TH using improved white 
top-hat (MI-WTH) and improved black top-hat (MI-BTH) 
are calculated by Eqs. 1 and 2:

where ΔS = So − Si indicates the marginal structuring 
element for the region between ROI and the surrounding 
region, whereas Sb represents a region that is in the ROI. 
To eliminate the potential negative values, Eqs. 1 and 2 are 
further derived to acquire negative gray levels, which are 
computed by Eqs. 3 and 4:

The key purpose of MI-WTH and MI-BTH is to retrieve the 
bright and light regions, respectively, and MI-TH can achieve it 

(1)MI −WTH(x, y) = f (x, y) − ((f ⊕ ΔS)ΘSb

(2)MI − BTH(x, y) = ((fΘΔS)⊕ Sb) − f (x, y)

(3)MI −WTH(x, y) = f (x, y) − min((f ⊕ ΔS)ΘSb, f (x, y)

(4)MI − BTH(x, y) = max((fΘΔS)⊕ Sb, f (x, y)) − f (x, y)

Fig. 3  The block diagram for the proposed MMIF
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with the incremental size of structuring elements. Let n scales 
of structuring elements be determined, and the size of every 
scale s is (1 ≤ s ≤ n) then the size of the square structuring 
element for each scale (nLs) and the size of square marginal 
structuring element for each scale (nWs) are obtained by Eqs. 5 
and 6, respectively.

where nS indicates the incremental in size for the nth scale. 
The MI-TH executes the extraction for regions of size until 
nW − 2 × nM from the ΔS and Sb . The nM provides the mar-
gin size in the ΔS.

Therefore, the dark and light medical photo regions are 
retrieved for MI-WTH and MI-BTH at scale s are calculated 
by Eqs. 7 and 8:

(5)nLs = nL + s × nS

(6)nWs = nW + s × nS

(7)MI −WTH(x, y) = f (x, y) − min((f ⊕ ΔSs)ΘSbs, f (x, y))

The size of Sbs and ΔSs are determined based on nLs and 
nWs respectively. Therefore, the dark and light regions are 
accomplished from the retrieved multiscale photo regions for 
final medical images by Eqs. 9 and 10 as:

where R indicates the region. The next step is to improve the 
contrast between dark and bright regions, which is accom-
plished by powered photo enhancement (E) by Eq. 11:

where f is the input photo, E is the enhanced photo, and 
w1,w2 and w3 are the weight for adjusting the contrast 
enhancement. It will brighten the light regions than the 
original photo by enlarging the w2 and w3.

(8)
MI − BTH(x, y) = max((fΘΔSs)⊕ Sbs, f (x, y)) − f (x, y)

(9)RW = max(MI −WTH1,MI −WTH2.....MI −WTHn)

(10)RB = max(MI − BTH1,MI − BTH2.....MI − BTHn)

(11)E = f × w1 + RW × w2 − RB × w3

Fig. 4  Flowchart of NL-AMF
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3.3  Non‑linear Anisotropic Diffusion (NL‑AD)

The source photo contains energy information and detailed 
features such as textures, contours, edges, and boundaries. 
The appropriate fusion scheme is employed for each part 
because a single fusion strategy cannot provide energy 
information and detailed features. The NL-AD multiscale 
decomposition (MSD) approach is utilized in this paper to 
split each source photo into the base (energy information) 
part and the detailed (features, textures, edges, and contours) 
part. The NL-AD holds considerable potential for preserv-
ing photo features while eliminating noise. The proposed 
approach utilizes an intra-region smoothing procedure and 
the use of partial differential equations (PDE) to retain sharp 
textures while also precisely smoothing out homogenous 
regions. The NL-AD for photo diffusion is computed by 
Eq. 12, which utilizes the flux function:

In Eq. 12, Pt indicates the photo diffusion, Δ = gradient 
operator, Δ = Laplacian operator, R(x, y, t) = diffusion rate, 
and t is the number of iterations. It is vital to keep the stabil-
ity of diffusion, and this can be achieved using forward time 
central space (FTCS), which is accomplished by maximum 
principle [39]. It can be computed by Eq. 13:

The Pt+1
i,j

 shows coarse resolution of photo in the forward 
time t + 1 , � indicates the stability constant in the value of 
0 ≤ � ≤ 0.25 . The ∇W ,∇S,∇E and ∇N represents the neigh-
boring derivates in all four directions. Equation 13 can fur-
ther be computed by Eq. 14 as follows:

The flux functions are updated for all iterations in east, 
west, north, and south directions by Eq. 15:

The RN ,RS,RE and RW represent the flux functions. The 
h(.) is function which decreases monotonically with h(0) = 1 . 
It can be calculated by Eqs. 16 and 17:

(12)Pt = R(x, y, t)ΔP + ∇R.∇P

(13)
Pt+1
i,j

= Pt
i,j
+ �[RN .∇NP

t
i,j
+ RS.∇SP

t
i,j
+ RW .∇WP

t
i,j
+ RE.∇EP

t
i,j
]

(14)

⎧⎪⎪⎨⎪⎪⎩

∇NPi,j = Pi−1,j − Pi,j,

∇SPi,j = Pi+1,j − Pi,j,

∇EPi,j = Pi,j+1 − Pi,j,

∇WPi,j = Pi,j−1 − Pi,j

⎫⎪⎪⎬⎪⎪⎭

(15)

⎧⎪⎪⎨⎪⎪⎩

Rt
Ni,j

= h(⇑ (∇P)t
i+1∕2,j

⇑) = h(
���∇N P

t
i,j

���) ,
Rt
Si,j

= h(⇑ (∇P)t
i−1∕2,j

⇑) = h(
���∇S P

t
i,j

���),
Rt
Ei,j

= h(⇑ (∇P)t
i,j+1∕2

⇑) = h(
���∇E P

t
i,j

��� ),
Rt
Wi,j

= h(⇑ (∇P)t
i,j−1∕2

⇑) = h(
���∇W Pt

i,j

��� ),

⎫⎪⎪⎬⎪⎪⎭

The z in Eqs. 16 and 17 indicate a free parameter that 
evaluates the validity of the boundary according to the inten-
sity level of edges.

Let the source photo Pn(x, y)n=1 with the size of s × q are 
fed to NL-AD process for obtaining the base layer, then it is 
computed by Eq. 18:

In Eq. 18, the Adf (Pn(x, y)) presents the NL-AD procedure 
for n − th base layer, and Bn(x, y) shows the obtained base 
layer; then, the final detailed part is computed by Eq. 19:

After splitting both source photos into the base and 
detailed parts by NL-AD, the next step is to apply a fusion 
strategy to both parts.

3.4  Feature extraction of base parts by dimension 
reduction method

The energy information is extracted from base layers 
using appropriate fusion strategies. Various authors have 
attempted to extract information from base layers by distinct 
approaches but failed to preserve sufficient energy informa-
tion. This paper employs the dimension reduction-based 
fusion strategy, which not only preserves sufficient energy 
information but also reduces the complexity and addresses 
the overfitting issues. This approach transforms the corre-
lated variables into independent ones, resulting in a con-
cise representation from both base layers. Moreover, it is an 
expedient dimension reduction approach that swiftly chooses 
the highest Eigenvector as a principal component. Each com-
ponent is mutually perpendicular to other components, aid-
ing in removing redundant data. The procedure for a fusion 
of base layers by this method is elaborated as follows:

• Let B1(x, y) and B2(x, y) represent the two base layers that 
are achieved from the NL-AD. The column matrix Z is 
computed for these base layers. After that, the variance 
vr and covariance cr are computed from Z by Eq. 20:

(16)h(∇P) = e
−(

‖∇P‖
z

)
2

(17)h(∇P) = e
−(

‖∇P‖
z

)
2

(18)Bn(x, y) = Adf (Pn(x, y))

(19)Dn(x, y) = Pn(x, y) − Bn(x, y)

(20)Z =

[
vr1 cr(1, 2)

cr(1, 2) vr2

]

(21)cr =
(
∑
(x1 − x1) × (x2 − x2))

Tr − 1
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Here, Tr indicates the iteration number, vr indicates the 
variance, and cr indicates the covariance.

• The next step is to compute the Eigenvalues � by Eq. 22:

  Here Det is abbreviated for Determinant, while I is the 
identity matrix.

• The Highest Eigenvectors � are computed after acquiring 
the Eigenvalues by Eq. 24:

• Then, independent variables Ic1 and Ic2 corresponding to 
match highest �(�max = max(�1, �2)) . Since �max is the 
highest Eigenvalues and �max is the highest Eigenvector, 
then Ic1 and Ic2 are acquired by Eq. 25:

• The last step is to compute the fusion of base layers 
which is mathematically obtained by Eq. 26:

The fusion of both layers preserves sufficient energy 
information by fast computation while also avoiding over-
fitting issues.

3.5  Feature extraction of detailed parts by a novel 
Deep CNN

It is the prime motive of any fusion method to preserve all 
substantial detailed features extracted from the detailed 
parts. In recent years, numerous fusion strategies have 
been designed to extract features such as contours, edges, 
boundaries, and textures. Nevertheless, the produced photo 
is unable to preserve significant features. To the best of our 
knowledge, this paper is the first attempt that uses a novel 
deep convolution neural network (D-CNN) by employing 
the skipping convolutional layers and deconvolutional layers 
for enhancing the fusion effect and retaining the true colors, 
textures, and edges in the detailed parts. The proposed novel 
D-CNN uses convolutional layers, skipping convolution lay-
ers, pooling layers, rectified linear units (ReLU), and decon-
volutional layers, as depicted in Fig. 5. The proposed model 
supports end-to-end learning, meaning that the entire net-
work can be trained in a single optimization process. This 
simplifies the training procedure and allows the network to 

(22)Det|Z − �I| = 0

(23)((vr1 − �) × (vr2 − �)) × cr(1, 2)2 = 0

(24)�1 =

[
�1(1)

�2(2)

]
and �2 =

[
�1(1)

�2(2)

]

(25)Ic1 =
�max(1)∑
n �max(n)

, Ic2 =
�max(2)∑
n �max(n)

(26)B(x, y) = Ic1B1(x, y) + Ic2B2(x, y)

learn effective feature representations specifically tailored to 
the multimodal medical image fusion task. Figure 5 shows 
that five stages are applied to extract multi-layer features. 
The prime purpose of using D-CNN is its potential to extract 
multi-layer features from detail parts with better visual per-
ception. The other main reason for using this model is its 
feasibility in which we have set a fixed size of all convolu-
tional layers 3 × 3 with a stride of 1, while the size of pooling 
layers is also fixed 2 × 2 with a stride of 2. The ReLU func-
tion is utilized after each convolutional layer to speed up the 
training, thereby saving time. The pooling layer is employed 
in stages 1 and 4 after the ReLU function. The pooling lay-
ers act as sub-sampling that decreases the size of features.

Since D-CNN retains the color, textures, and edges, how-
ever some edges, textures, and colors are lost during fusion. 
Therefore, two 1 × 1 convolutional skip layers are used to 
increase the fusion effect. The features that are sub-sampled 
by pooling layers are up-sampled by two deconvolutional 
layers to match the dimensions employed after stage 5. 
These multi-layer features are fused, which enhances the 
overall quality of fusion.

These enhanced features are then applied to the SoftMax 
operator, and the stochastic gradient descent (SGD) is used 
in this paper to optimize the loss functions. The softmax loss 
function is computed in this paper by 27:

where ŷ= (̂y1, ŷ2) defines the output vector probability and 
y = (y1, y2) shows the corresponding label vector of the 
class. The patch size is fixed to 128 with a momentum of 
0.9, having a weight decay of 0.0005, while the loss func-
tion in the training phase is reduced by SGD. Therefore, the 
weight using updating rule is obtained by Eq. 28:

In Eq. 28, w indicates the weight, ζ defines the loss func-
tion, u shows the momentum, i presents the i − th iteration, 
and � highlights the learning rate, while��

/
�wi

 is derivative 
of the SoftMax loss function. The Xavier approach is 
employed for all the convolutional layers to initialize the 
weight, with bias having an initialization value of 0. Finally, 
the mean gradient (MG) is utilized for the fusion of both 
detailed parts, which is computed by 29:

where �
A
�
B
 are fused coefficients of the MG of detailed 

photos.
The reconstruction F(x, y) of the base B(x, y) and detailed 

D(x, y) photos are achieved by 1.30:

(27)�= (y,̂y) = −

2∑
i=1

yilog(̂y)

(28)wi + 1 = wi(0.9.ui − 0.0003.b.wi − b.
�z

�wi

)

(29)D(x, y) =�Af(x, y)+�Bf(x, y)
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3.5.1  Parameters adjustment

In multimodal medical image fusion, the setting of param-
eters for deep learning has an important impact on training 
and testing the model. Therefore, it is important to set all the 
parameters appropriately. There are many parameters that 
need to be set, including batch size, epoch, balance param-
eters, learning rate, and so on.

a. Batch size: The batch is part of the data that is used for 
training, and batch size is the total number of training 
samples for each batch. It is vital to choose the batch 
size carefully to maintain a balance between memory 
capacity and memory efficiency to optimize the speed 
and performance of the proposed model. The batch 
size should be set based on the actual situation of the 
memory, according to Leslie’s theory. By keeping this 
in mind, the batch size to 32.

b. Epoch: The epoch term defines the number of times the 
learning algorithm works during the whole training set. 
The epoch value is related to the stability of the network 

(30)F(x, y) = B(x, y) + D(x, y) training and the effect of fusion, and a higher value of 
the epoch allows the learning algorithm to run until the 
model’s error is minimized sufficiently. In the assess-
ment of medical image fusion systems, the structural 
similarity index (SSIM) holds particular significance. 
This metric assesses the model's performance by consid-
ering brightness, contrast, and structure. It is particularly 
well-suited for determining the optimal epoch value set-
ting. A higher value of SSIM corresponds to a better-
quality of fused image. Ten random pairs of medical 
images are selected with different values of the epoch. 
When epoch = 48, the corresponding SSIM values reach 
the maximum, and the obtained fused image has better 
visual perception. Therefore, an epoch value of 48 to 
train the D-CNN model.

c. Learning rate, momentum, and weight decay: In this 
work, the learning rate was adjusted using an adaptive 
strategy. By considering the D-CNN convergence and 
loss curves, proper adjustment was applied for the learn-
ing rate to avoid overfitting and provide optimal perfor-
mance during training. The proposed model achieves 
optimal performance by setting a learning rate of 
0.00001. In addition, the momentum and weight decay 
are set at 0.9 and 0.0005, respectively.

Fig. 5  The architecture of D-CNN for a fusion of detailed parts
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4  Experimental results, datasets, 
and evaluation of fusion schemes

Several experiments have been conducted on medical photos 
to prove the outstanding results of the proposed methods over 
SOTA methods. The qualitative and quantitative evaluation 
is carried out to compare all the methods with the proposed 
methods. Numerous scholars have used different quantitative 
approaches to evaluate the quality of fused photos, making 
it complicated to compare the different MMIF methods. By 
considering this flaw, this paper uses the same quantitative 
parameters used in comparing methods for the fair trial to 
demonstrate the supremacy of the proposed method. Five dif-
ferent medical imaging datasets for this paper are used, which 
are open access series of imaging studies (OASIS), image 
fusion database (IFD), BrainWeb Atlas (AANLIB), Alzhei-
mer’s disease neuroimaging initiative (ADNI), and medical 
image dataset annotation service (MIDAS). The images have 
been registered to produce numerous aligned cross-model pair 
photos and scanned into multimodal photos at a resolution 
of 256 × 256 . During the training set construction, we chose 
100 pairs of functional and structural images from the men-
tioned five databases downloaded and cropped these photos 
into 10,230 patch pairs. The size of all structural patches and 
functional patches are set as 84 × 84 follows. This procedure 
not only guarantees the resilience of the training set but also 
ensures its variability. During the construction phase of a test 
set, 90 pairs of medical images from these databases are cho-
sen as our test set.

Table  2 describes the datasets used for performing 
the simulation results of proposed methods with existing 
MMIF schemes. This work compares our methods with 
classical and recent MMIF methods, which are discrete 
cosine transform (DCT) [19], improved discrete wavelet 
transforms (DWT) [18], convolutional sparse represen-
tation (CSR) [24], Latent low-rank representation using 
VGG-19 (LatLRR-VGG) [10], and convolution neural net-
work using hybrid optimization dynamic (CNN-HOD) [6]. 
All the experiments are performed using MATLAB 2021b 
on the 11th generation of core i5 2.40 GHz processor with 
16 GB of RAM

4.1  Qualitative Evaluation (QE)

The qualitative evaluation is a useful way to compare all 
the methods by the human visual system (HVS). Various 
factors, including contrast, brightness, sharpness of edges, 
textures, and boundaries, assess the photo quality of each 
photo. Experiments are performed on ten pairs of MMIF 
photos, with a detailed discussion on the Quality Evaluation 
(QE) of each method.

Figure 6 shows the results for the first pair of source pho-
tos. It can be observed by HVS that the proposed methods in 
Fig. 6c retain clear edges and textures due to novel D-CNN 
compared to other SOTA methods. The proposed method 
also has better contrast due to the MI-TH approach, which 
uses different-size structuring elements to adjust the pho-
to's contrast. Therefore, the proposed method retains better 
information regarding contrast, textures, edges, and precise 
tissues than all other methods. The DWT and DCT methods 
in Fig. 6g and h have more noise and blurred details than 
other methods, and it degrades the overall quality of a fused 
photo. The CSR method in Fig. 6f produces better results 
than DWT and DCT, but the edges are unclear, and it still 
has noise, so it cannot preserve the detailed edges and tex-
tures. The photo quality of CNN-HOD and LatLRR-VGG 
in Figs. 6d and e is more satisfactory than existing methods. 
However, the contrast of fused photos is not good, so it fails 
to distinguish the edges and soft tissue information. Moreo-
ver, these approaches cannot capture the significant textures 
due to noise introduced in the fused photo.

It can be analyzed in Fig. 7c that the proposed method 
produces outstanding quality photos than all other SOTA 
methods. The NL-AMF in the proposed method removes the 
noise by adaptively resizing the filter mask. Novel D-CNN 
preserves smooth edges and textures without loss of fusion 
effect, and the fused photo has good contrast due to the prop-
erties of the MI-TH method. The quality of CNN-HOD and 
LatLRR-VGG in Figs. 7d and e also produce better results, 
but the textures and edges are still not up to the mark as the 
proposed method. Moreover, it can be seen in Figs. 7d and 
e that some useful information is lost due to noise gener-
ated during the fusion process. The DCT method in Fig. 7h 
acquires the worst result than the other methods, and it is 

Table 2  MMIF datasets for 
experiments

Dataset Modalities Body organ Link for dataset

OASIS MRI and PET Brain https:// www. oasis- brains. org/
AANLIB CT, MRI, PET, and SPECT Brain http:// www. med. harva rd. edu/

AANLIB/ home. html
ADNI MRI, CT, and PET Brain http:// adni. loni. usc. edu/
MIDAS MRI, CT, SPECT, and PET Brain, heart, head, 

liver, and bones
https:// www. insig ht- journ al. org/

IFD CT and MRI Brain and bones http:// www. image fusion. org

https://www.oasis-brains.org/
http://www.med.harvard.edu/
https://www.AANLIB/home.html
http://adni.loni.usc.edu/
https://www.insight-journal.org/
http://www.imagefusion.org
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highly affected by noise, which degrades the overall qual-
ity of the fused photo. The CSR and DWT in Figs. 7f and g 
preserve better results than DCT, but their performance is 
less than the other methods.

It can be depicted in Fig. 8c that the pixel consistency 
of the proposed method of the fused photo is the best, and 
the tissues are more precise than other SOTA methods. The 
quality of CNN-HOD and LatLRR-VGG also resembles, but 
these approaches still fail to distinguish between the textures 
and tissues in the photo. The DCT method in Fig. 8h cannot 
capture the edges and the textures, and the overall quality 
of the fused photo is worse than the existing methods. The 
CSR produces better textures and edges than CNN-HOD, 
LatLRR-VGG, and other existing methods.

The proposed method in Fig. 9c achieves its supremacy 
over SOTA methods by retaining all substantial detailed 
information from CT and MRI photos. The vivid contrast 
and noise-free fused photos are obtained due to the unique 
features of MI-TH and NL-AMF approaches. Moreover, 
due to the skipping and deconvolutional layers in novel 
D-CNN, the proposed method preserves significant pat-
terns with smooth edges and boundaries. Therefore, the 
proposed method acquires the overall complement infor-
mation from both source photos than all existing meth-
ods. The DCT method introduces more artifacts than the 
other methods that fail to produce good-quality photos. 
The DWT and CSR in Figs. 9f and g produce better infor-
mation; however, there is still contrast and noise issue in 

DWT. The CNN-HOD and LatLRR-VGG obtain better 
quality photos than existing methods. However, CNN-
HOD retains more information from CT photos while 
LatLRR-VGG preserves more information from MRI pho-
tos, which makes these approaches unable to get sufficient 
detailed information over the proposed method.

It can be observed in Fig. 10c that the lesions, edges, 
and textures in the proposed method are more precise and 
vivid than all existing approaches due to the unique char-
acteristics of novel D-CNN and NL-AD. Moreover, the 
contrast of the proposed method is more outstanding than 
that of other methods due to the different structuring ele-
ments of the MI-TH strategy that help detect all lesions in 
the fused photo. The noise is effectively eliminated due to 
the noise reduction approach of the proposed scheme. Due 
to the unique characteristics of each stage in the proposed 
scheme, the fused photo produces more significant infor-
mation than any other existing methods. The fused photos 
obtained by DCT and DWT in Fig. 10g and h are affected 
due to the distortion, which affects the overall quality of the 
photo. The CNN-HOD approach in Fig. 10d produces better 
quality photos than CSR, DWT, and DCT, but this approach 
still cannot retain better contrast due to which it lacks in dif-
ferentiating the bones and soft tissues in the body.

It can be seen in Fig. 11 that the proposed method acquires 
better contrast with very negligible noise than other existing 
methods due to the unique characteristics of NL-AMF and 
MI-TH. Besides, the proposed method has smooth edges, 

Fig. 6  Pair one: (a) CT image (b) MRI image (c) Proposed (d) CNN-HOD (e) LatLRR-VGG (f) CSR (g) DWT (h) DCT
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sharp textures, and significant energy information due to 
NL-AD, novel D-CNN, and dimension reduction approach. 
The CNN-HOD and LatLRR-VGG obtain better results than 

the remaining existing methods, and both approaches produce 
similar results. The CNN-HOD produces better results than 
LatLRR-VGG in some cases, while LatLRR-VGG acquires 

Fig. 8  Pair three of CT and MRI: (a) CT image (b) MRI image (c) Proposed (d) CNN-HOD (e) LatLRR-VGG (f) CSR (g) DWT (h) DCT

Fig. 7  Pair two of CT and MRI: (a) CT image (b) MRI image (c) Proposed (d) CNN-HOD (e) LatLRR-VGG (f) CSR (g) DWT (h) DCT
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better results than CNN-HOD in others, making it difficult to 
give a second rank from these approaches through HVS. The 
DCT falls in last in this race as it fails to capture good-quality 
photos because it is highly affected by noise and artifacts. The 

fused photos generated by DWT are also distorted due to arti-
facts, and improper fusion strategy results in an image with less 
information. The CSR generates better results than DWT and 
DCT, but the quality of this approach is still not up to the mark.

Fig. 9  Pair four of CT and MRI: (a) CT image (b) MRI image (c) Proposed (d) CNN-HOD (e) LatLRR-VGG (f) CSR (g) DWT (h) DCT

Fig. 10  Pair five of CT and MRI (a) CT image (b) MRI image (c) Proposed (d) CNN-HOD (e) LatLRR-VGG (f) CSR (g) DWT (h) DCT
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4.1.1  Case study for qualitative evaluation by experts

The proposed method achieves superior results compared to 
existing methods through the Human Visual System (HVS). 
This superiority is further supported by a case study wherein 
ten field experts were engaged to rank each method. These 
specialists validated the qualitative evaluation by several fac-
tors: photo contrast, artifacts in the generated photo, infor-
mation loss, energy information in the photo, and detailed 
features, including edges, textures, patterns, and boundaries 
in the fused photo. The experts were requested to rank each 
method on a scale from one to five, in which a higher value 
corresponds to a better-quality photo.

The ten pairs of source photos are used in this work, and 
each expert was asked to score for the proposed method, 
CNN-HOD, LatLRR-VGG, CSR, DWT, and DCT. The 
anonymous results were provided to each expert in random 
order for a fair trial to avoid bias in the qualitative evalua-
tion. In addition, all the simulation results were provided 
to all experts on the same computer screen, light and were 
seated in the same room for fair observation. Each field 
expert ranked the simulation results of all methods for ten 
pairs of source photos. Table 3 presents the average score 
assigned by each expert for all methods for each pair of 
source photos.

Figure 12 presents the score points for each method given 
by field experts. The proposed method achieves a higher 
score than existing methods except for pair-6 and pair-7. 
Hence, it can be validated that the proposed method shows 
its supremacy in terms of not only qualitative evaluation but 
also field experts through user case studies.

4.1.2  Stability analysis

The stability of the proposed model can be obtained in terms 
of how well the model is generalized to new, unseen data and 
how it can effectively train the data. In order to accomplish 
this task, this work uses Wilcoxon signed rank to present 
the superior stability of the proposed method over existing 
methods. The Wilcoxon signed-rank test detects a signifi-
cant difference between the source images and the fused 
photo. We have generated two types of image pairs for test-
ing purposes: the CT image versus the fused photo and the 
MRI image versus the fused photo. This helps to assess the 
effect of different methods on image fusion. The smaller the 
p-value, the more chance it is to reject the null hypothesis, 
indicating that the fused photo differs from the source photos 
and thereby carries substantial information about the CT/
MRI images.

It can be depicted from Table 4 that the p-value of CT-
fused acquired by the proposed method is the lowest, indi-
cating that the proposed method can fuse the input images 
more effectively.

4.2  Quantitative evaluation

The qualitative evaluation is carried out to prove the valida-
tion of any method that is acquired by HVS through numer-
ous factors, but this evaluation is not enough for justifica-
tion of superiority for any method. There is also a need to 
prove the supremacy of any method by using mathemati-
cal formulas, known as quantitative evaluation. Numerous 
authors have used different quantitative assessment param-
eters because there is no universal standard for them, but this 
work uses those assessment parameters that are commonly 
used by existing methods that we have compared. A short 
view for each parameter is presented, which is used in this 
paper for comparison.

4.2.1  Quality transfer ratio from source photo 
to a generated photo ( QAB

G
)

The QAB
G

 is utilized to observe the transfer of detailed infor-
mation such as edges, textures, and boundaries from both 
source photos to a final generated photo [40]. The higher 
value of QAB

G
 corresponds that more detailed information is 

transferred from source photos to a generated photo.

4.2.2  Feature mutual information (FMI)

The FMI is computed to observe the transformation of photo 
features, including contrast, textures, and edges from indi-
vidual source photos to a final generated photo [4]. There 
will be more transformation of information from source pho-
tos to generated photos if the value of FMI is large.

4.2.3  Structural similarity index (SSIM)

The SSIM indicates the structural similarity between the 
source photos and the generated photo [4]. The larger value 
of SSIM relates that a large amount of similar information is 
extracted from the source photos to fused photos.

4.2.4  Average pixel intensity (API)

The API quality parameter is computed to check the contrast 
of the fused photo. The larger value of API indicates that the 
fused photo has better contrast, while the smaller value of 
API indicates that the generated photo has a dull contrast [4].

4.2.5  Noise and artifacts ratio from source photos 
to a generated photo ( NAB

G
)

The NAB
G

 is computed to find the amount of noise and arti-
facts in the generated photo. The higher value of NAB

G
 indi-

cates that a large amount of noise or artifacts is introduced 
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CT photo 

MRI photo 

Proposed 

method 

CNN-HOD 

LatLLR-

VGG 

CSR 

DWT 

DCT 

Fig. 11  CT photos, MRI photos, proposed method, and other fusion methods. From the top first row to the bottom 8th row shows CT photo, 
MRI photo, proposed method, CNN-HOD, LatLRR-VGG, CSR, DWT, and DCT fusion methods
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in the fused photo, while a small value results in a photo 
with less noise [40].

The simulation results for ten pairs of CT and MRI source 
photos are carried out in this paper. The average values for 
QAB

G
 , FMI, SSIM, API and NAB

G
 are presented in Table 5. As 

mentioned above, higher values of QAB
G

 , FMI, SSIM, and API 
relate to better quality for a generated photo, and higher values 
are written in bold letters. In contrast, the smaller value of NAB

G
 

corresponds to a photo with less noise, and smaller values are 
written in bold letters.

In addition, this work has also plotted the graphs for 
all parameters, which are presented in Figs. 13, 14, 15, 
16 and 17. It can be seen from Table 5 that the average 
values of quantitative parameters are higher for the pro-
posed method over existing methods. It can be observed in 
Fig. 13 that the proposed method achieves higher values 
of QAB

G
 in all pairs of source photos except for the sixth 

pair. The proposed method also attains higher values for 
the FMI quality parameter for all pairs of photos except 
for the fifth and sixth pair of photos, which can be seen in 
Fig. 14. The proposed method also obtains larger values 
for all pairs of source photos for the FMI parameter except 
for the fifth and sixth pair of source photos, where CNN-
HOD and LatLRR-VGG have slightly higher values, as 
shown in Fig. 15.

Similarly, it can be observed in Fig. 16 that the proposed 
method has larger values for all fused photos of API param-
eter except for the seventh pair of source photos where CNN-
HOD has a little higher values. Hence, it reveals that the fused 

Table 3  Average score gained 
by each method from all experts

Pair of CT 
and MRI

Proposed CNN-HOD [6] LatLRR-
VGG[10]

CSR [24] DWT [18] DCT [19]

1 5 4 4.5 4 2.5 2
2 5 4.5 4 3.5 3 2
3 5 4.5 4.5 4.5 4 1.5
4 5 4.5 4 4.5 3 2.5
5 5 4 4 3 2.5 2
6 4.5 4.5 5 4 3.5 2
7 4.5 5 4 4 4 3
8 4.5 4 3.5 4 3 2.5
9 5 4 4 4.5 3.5 3
10 5 4 4.5 3.5 3.5 2

Fig. 12  The average score 
obtained by experts for each 
method

0

1

2

3

4

5

6

Pair-1 Pair-2 Pair-3 Pair-4 Pair-5 Pair-6 Pair-7 Pair-8 Pair-9 Pair-10

Qualitative evaluation by ten experts

Proposed CNN-HOD LatLRR-VGG CSR DWT DCT

Table 4  Stability analysis of the proposed method with existing 
methods

Methods Wilcoxon Signed-Rank Test

CT-Fused MRI-Fused

DCT 3.75e-18 3.71e-18
DWT 3.72e-19 5.68e-19
CSR 5.67e-19 3.61e-19
LatLRR 3.71e-19 5.32e-19
CNN-HOD 3.62e-19 3.63e-19
Proposed 3.41e-19 3.39e-19
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photo of the proposed method attains better contrast, sufficient 
energy information, and enriched detailed features such as 
smooth edges, textures, and boundaries than other methods. 
The proposed method also handles the collision more effec-
tively than existing methods. This paper uses the quality trans-
fer ratio from source photos to output photo ( QAB

G
 ), feature 

mutual information (FMI), average pixel intensity (API) and 
structural similarity index (SSIM) for computing the extrac-
tion of features. The proposed method gains higher values in 
these four parameters than existing methods, which shows that 
the proposed method captures more salient features by avoid-
ing collision. This is due to effective pre-fusion refinement 
approaches such as non-linear average median filtering (NL-
AMF) and multiscale improved top-hat (MI-TH) approach 
that are particularly implemented to circumvent issues such 
as collision, noise, and artifacts, enabling the improvement 
of overall visual quality and clarity of fused photos. These 
preprocessing steps contribute to the mitigation of collision-
related distortions, ensuring a more accurate and reliable rep-
resentation of the original scene.

Likewise, it can be analyzed in Fig. 17 that there is 
also very negligible noise in the proposed method com-
pared to all other methods except for the sixth pair of 
source photos, where LatLRR-VGG has a little less noise. 

Therefore, it is concluded that the proposed method not 
only preserves better contrast, complete energy infor-
mation, and substantial detailed features, but it also has 

Table 5  The average values of 
quantitative parameters for all 
methods

Quality parameter Proposed CNN-HOD LatLRR-VGG CSR DWT DCT

QAB
G

0.8986 0.8527 0.8503 0.82945 0.8038 0.7649
FMI 0.4783 0.4497 0.4382 0.4193 0.3893 0.3520
SSIM 0.9056 0.8625 0.8502 0.8265 0.7928 0.7639
API 81.0487 78.0291 78.9432 74.8907 72.6984 68.8932
NAB
G

0.1275 0.1730 0.1869 0.2193 0.2498 0.2893

Fig. 13  The QAB
G

 plotting for ten pairs of source photos Fig. 14  The FMI plotting for ten pairs of source photos

Fig. 15  The SSIM plotting for ten pairs of source photos
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very negligible noise in comparison to all other existing 
methods.

4.3  Computation time

Considering the computation in the field of multimodal medi-
cal image fusion is important, specifically in the context of 
practical implementation of real-world applications. The 

average computation time for the proposed method and exist-
ing MMIF schemes is presented in Table 6. All the simulation 
results are obtained for computation time (t) in seconds using 
MATLAB 2021b on the 11th generation of core i5 2.40 GHz 
processor with RAM of 16 GB.

It can be depicted in Table 6 that the average computation 
time for LatLRR-VGG and CSR is higher than other methods, 
leading to the poorest timeliness. The computation time for 
DCT and DWT is the fastest; however, their performance on 
subjective and objective evaluation is worse. The computation 
time for the proposed method is longer than DCT and DWT, 
but better visual effects can sacrifice a small amount of time. 
The computation time for the proposed method is shorter than 
CNN-HOD, CSR, and LatLRR-VGG, and it also generates 
better visual effects on subjective and objective evaluation. 
There is a tradeoff between the computation time and the bet-
ter visual effects. The proposed method consumes less time 
than recent state-of-the-art methods while also achieving better 
visual effects on subjective and objective evaluation. Nonethe-
less, there is still a need to improve the consumption time, 
which is needed for real-time applications.

5  Discussion

Designing an MMIF algorithm that extracts all substantial 
features with uniform contrast by removing noise from mul-
tiple source photos into a single fused photo is one of the hot 
research area in the field of medical applications. This paper 
is one of the attempts in the field of a medical research area 
that uses a novel fusion approach. Based on the implemented 
MMIF approach in this work, the generated fused photo does 
not only remove the noise and adjust the contrast but also 
retains sufficient energy information with enriched detailed 
features such as textures, edges, and boundaries, which can 
be applied in numerous medical applications for diagnosing 
the disease.

Various hybrid MMIF approaches have been designed 
to amalgamate the specific features from different methods 
to enhance the quality of the generated photo. The pro-
posed novel hybrid method consists of several sequential 
stages, and each stage is designed for the specific task 
of improving the quality of the fused photo. Noise is the 
pivotal issue that degrades the overall performance of any 
fusion method, and the authors haven’t addressed this 
issue. The proposed work designs an NL-AMF preproc-
essing noise reduction approach that adaptively resizes 
the mask filter in accordance with the noise level. This 

Fig. 16  The API plotting for ten pairs of source photos

Fig. 17  The NAB
G

 plotting for ten pairs of source photos

Table 6  The average running time for the proposed method and other methods (Unit of time is seconds)

Method DCT DWT CSR LatLRR-VGG CNN-HOD Proposed

Time 10.6 9.4 93 96 15.4 13.1
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approach can eliminate the noise and reduce the compu-
tation time due to the unique feature of a statistical his-
togram that makes the search process faster for finding 
median values. Another unique stage in this paper is to 
design an MI-TH preprocessing method for adjusting the 
contrast of source photos, which is neglected by research-
ers in the field of MMIF. Though very few scholars have 
considered adjusting contrast, their approach still fails to 
produce the desired photo contrast. The MI-TH approach 
at the preprocessing stage uses different-size multiscale 
structuring elements for accurately retaining the ROI, 
resulting in a photo with adjustable contrast and enriched 
features.

It is well-known that any source photo contains energy 
information (base part) and detailed features such as edges, 
textures, and boundaries (detailed part). Therefore, it is one 
of the fundamental steps of any MMIF to split the source 
photos into the base and detailed parts before applying the 
fusion strategy because both (the base and detailed parts) 
contain different information, and one fusion strategy can-
not retain substantial information. This paper employs an 
NL-AD using a forward time space central and partial differ-
ential equation approach, which cannot only split the source 
photos into a base part and detailed parts but also smoothen 
the homogenous regions with its intra-region smoothing 
process.

Numerous authors have designed appropriate fusion strate-
gies for a fusion of base and detailed parts. Nonetheless, their 
fusion methods either lack in preserving sufficient detailed fea-
tures or artifacts are introduced due to improper fusion strate-
gies. To the best of our knowledge, this paper is the first attempt 
to design a novel D-CNN method that employs skipping con-
volution and deconvolution layers using direct mapping and the 
focus map to shield the enriched detailed features without losing 
colors and other crucial details. Moreover, the dimension reduc-
tion approach is utilized for a fusion of base layers, which attain 
not only vital energy information but also discards unnecessary 
information and addresses overfitting issues. At last, the ulti-
mate generated fused photo is retrieved through the superposi-
tion of the base and detailed parts. This fused photo preserves 
all complementary energy information and detailed enriched 
textures with desired contrast by avoiding uneven illumination 
and mitigating noise and artifacts. These innovative stages entitle 
this proposed study to acquire outstanding results compared to 
existing methods on qualitative and quantitative evaluation for 
examined normal scenes and complex scenes.

6  Limitations and future recommendations

Although the proposed method justifies its superiority over 
existing methods by producing high-quality fused photos, 
it still has some limitations that need to be addressed 

for future work. The consumption time of the proposed 
method is less, but it is still not promising for numerous 
medical applications. In future work, one of the main tasks 
would be shortening the consumption time while maintain-
ing the quality of fused photos, which can be implemented 
in numerous industrial applications that require real-time 
performance. Another major challenge can be implement-
ing the model from research theory to real-world deploy-
ments, which can encounter practical challenges related to 
integration with existing systems and completability. To 
cope with that issue, collaboration with medical hospitals 
can facilitate the identification of deployment issues. Our 
next focus would be to implement medical image fusion 
for specific applications and deploy it in medical hospitals. 
Another limitation of this work pertains to the unified pixel 
size utilized in the image fusion process. The reliance on a 
fixed pixel size poses a constraint. This limitation implies 
that the model's performance may be compromised when 
applied to images captured with different cameras or speci-
fications. One of our future potential research directions 
is to investigate adaptive fusion methods that can dynami-
cally adjust to different pixel sizes encountered in diverse 
imaging setups. This could involve the development of 
algorithms capable of automatically detecting and adapt-
ing to variations in pixel sizes, thereby ensuring robust 
performance across a range of imaging devices and speci-
fications. In addition, exploring techniques such as image 
resampling or interpolation to standardize pixel sizes 
before fusion could be beneficial for the mentioned issue.

Another limitation of this work is that it cannot effectively 
treat the occlusion, partial visibility that occurs in the real-
time application. Although this work is based on static images, 
the fused images are not affected by occlusion and partial vis-
ibility. However, real-time images are highly affected by this 
issue. Future research on real-time images to treat occlusion 
and partial visibility could be based on the implementation 
of CNN architecture, which uses semantic segmentation and 
multi-resolution fusion approaches. These approaches can be 
potential solutions to treat the occlusion, partial visibility, and 
overlapping regions.

7  Conclusion

The novel hybrid MMIF algorithm is designed in this paper 
to integrate the merits of each stage for improving the 
quality of generated photos, which can be used in numer-
ous medical applications for diagnosing. The NL-AMF 
approach is employed at a preprocessing stage, which miti-
gates the noise and minimizes the computation time due 
to the unique attribute of the statistical histogram, which 
swifts the searching process for finding median values. 
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The photo is then processed by the MI-TH method, which 
has distinctive characteristics of using different-sized 
structuring elements to preserve the desired ROI, resulting 
in an image with better contrast and detailed features. The 
noise-free and improved contrast photos are split into base 
and detailed parts by NL-AD using the forward time space 
central method that smoothens the homogenous regions 
with its intra-region smoothing feature. The detailed parts 
are fused by a novel D-CNN, which is the first attempt to 
design skipping convolution and deconvolution layers to 
shield the detailed features without loss of colors and other 
crucial details using direct mapping and focus map. Con-
versely, the base parts are fused by a dimension reduction 
fusion strategy, which is proven to be the best method for 
preserving the energy information, and it also addresses 
the overfitting issues while discarding unnecessary data. 
Finally, a fused photo is generated by the superposition of 
base and detailed parts, which contains significant energy 
information, substantial detailed features, and visually 
better contrast with negligible noise. The comparison of 
the proposed method and SOTA methods is conducted 
by qualitative and quantitative evaluation of ten pairs of 
source photos. The qualitative evaluation is carried out by 
ten field experts based on their HVS experience, and the 
proposed method achieved a higher score than all other 
existing methods. Similarly, the qualitative evaluation 
( QAB

G
 , FMI, SSIM, API, and NAB

G
 ) is acquired by math-

ematical computation, and the proposed method surpasses 
existing methods, which further justifies the supremacy of 
the proposed method.
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